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The Busy Manager's Guide to Evaluating New l|deas

Does the shiny new object address a. . .

Fundamental business Fundamental business
problem? objective?

= KYC = Growth

= Adverse selection = Profitability

= Morale hazard = Risk

Unique to insurance Common to all businesses



Insurance Today: Looking Forwards by
Looklng Backwards :
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Insurer Expenses By Value Chain Component

Claim

Customer
. $69.38

$113.9B

Paper
$51.2B

$41.6B
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o Get tech to work.. get the product rlght Ilftoff




Al Will Be More Important Than Fire & Electricity

Statistical models Machine learning Al
= Low marginal value of data = |ncreasing returns to data
= Few experts provide. .. = Many users provide. ..
= Complex inputs = Simple inputs
Statistical Value of Data Al/ML Value of Data
Decreasing Marginal Value Increasing Marginal Value
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3 3

2 2
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Symbiotic Tetrahedron of InsureTech Capabilities
...in Search of Problems

= Mobile

= Cloud

= ASIC, GPUs

= Internet of Things (loT)
= Home sensors

= Auto telematics

= Drones, micro satellites
= Quantum computing

= Text analysis, semantics

= Voice recognition

= Chat bots, Siri, Alexa

= Image recognition

= Virtual reality

= Tensor Flow

= Hadoop, MongoDo, Redis
= Python, R, Julia, Go

= Artificial intelligence (Al)
= Machine learning (ML)

= Neural networks

= Deep learning

= Hash functions

= Cryptography

= Compressed sensing

Algorithms

= Big data (BD)

= Text, speech, image, video
= Behavioral data

= Social media

= Spending

= Credit

= Trading, financial data

Get tech to work...get product right.. liftoff
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Insurance Opportunities: Real but Defensive

More granular pricing

= You can't afford to be the company with the coarsest rating
plan—adverse selection is a real and is an arms race
= Race to the bottom, CBA or ROI rationale least-bad choice
= First mover advantage largely gone
= Overly-granular rating plans undermine the purpose of insurance
= Important social questions about appropriate rating variables
= |Important regulatory about price optimization
= Opportunities exist in lines which use proxy data: personal and small
commercial
= Big data less applicable for individually loss rated accounts

Actuarial optimism

= If you don't keep up you will die. .. how soon do you want to die?
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Insurance Opportunities: Real and Positive

New products and services

= Better KYC and more effective underwriting & marketing
= Become the trusted risk partner: 24x7 risk monitoring

= Home telematics, monitoring and improved design

= Auto driving feedback: make near-misses real

= Health insurance nudges

= Build service income to offset lower loss cost/premium

= |mproved claims adjusting process

= Better fraud detection
= Improved customer satisfaction

= Learn from near misses—more underwriting information

Actuarial optimism

= How long do you want to live?
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Potential of Technology Varies with Problem Domain

Stunning Results

= Static, rules based environment
= Clean, direct observations

= Essentially limitless data

= Definitive right answer

= Classification problems

= Simple dynamic control

Building Capability

= Autonomy

13



Potential of Technology Varies with Problem Domain

Stunning Results

= Static, rules based environment
= Clean, direct observations

= Essentially limitless data

= Definitive right answer

= Classification problems

= Simple dynamic control

Building Capability

= Autonomy

Characteristics of Insurance

= Behavioral feedbacks

= Dynamic: reacts as we learn

= Proxy data, not direct

= Granularity drives small classes

= Uncertain information: claim
development, trend

= Latency: asbestos and
environmental

= Need to protect social function
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Dangers of Al/ML: We Don't Understand Why It Works

+.007 x =
: x4+
% sign(VaJ(8, 2, y)) esign(VoJ(6, z,3))
“panda” “nematode” “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

= Machine learning is like training your dog: it generally does what you
want but you don't know why

= Insurance issues: regulatory compliance, unwitting discrimination
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Insurance: Strong, but Stealth, Record of Innovation

Function Innovation
Direct
Customer
Response
Credit
Paper .
Scoring
) Alternative
Capital )
Capital
Digital
Claims E
Settlement

Result

GEICO market share march since 1990s, #2 auto
insurer today with strong growth trajectory.

Using big data since before there was big data; decline
in auto residual markets, except NC

ILS, sidecars, collateralized solutions grown from al-
most nil in 2000 to nearly USD90 billion today; capital
availability and speed-to-market has dampened under-
writing cycle and lowered cost of cat reinsurance

Allstate QuickFoto app introduced 2013 for smaller
claims; today 50 percent of all drivable vehicles in-
spected through two digital operating centers using
QuickFoto. Video chat to review damage with body
shops collapsed 5-7 day process to get “eyes on a vehi-
cle” to hours. USD52 million restructuring charge, Q2
2017 call.

15
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What if We Could Engineer a Trust-Machine. . .
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The Blockchain: enabling trust between strangers

Chained Hash-

key-value enforced

database integrity
Bitcoin!

Peer-to-peer Double-

distributed spend

validation mechanism



Blockchain Fills the Trust Vacuum

Reclaim personal ownership of personal information

= |t is possible to verify information without revealing it: a zero

knowledge proof

Where's Waldo? with a mat; Alibaba's Cave

= Distributed database of all private credit, health, behavioral data

One-time read/verify-only access

Read, act and forget, rather than read, act and store

User cannot pass along what they've learned

Transferable, international credit history, Bloom Credit

No possibility of Equifax hack: data encrypted, you hold keys
Smart contracts, DAO = decentralized autonomous organization

= Central database of underwriting information: easier bindable quotes

Theoretic potential is huge but commercial model less clear
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New Economic Reality Generates New Opportunities

Major opportunities

= Cyber risk: front-runners see on-going risk advisory service bundled
with meaningful indemnity back-up
= Gig economy coverage gaps, e.g. Uber driver coverage, AirBnB

Minor opportunities

= Peer to Peer

= Pay-as-you-Go/Use/Need

= Toy and trinket coverages

= Purchasing groups, Bought by Many
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Prognosis: Challenges, but Net Opportunity

Problems Objectives

Trend KYC AS MH | Grow Pft Risk | Net
Environmental ® ® ® ®  J Opportunity
Demographic (] ® Opportunity
Tech, Analytics ® ® ® ® ® ® Opportunity
Driverless Cars ® (] (] ® Threat
Social ® (] ® ® (] Opportunity
Economic ® [ ® ® Opportunity

KYC: know your customer ® positive

AS: adverse selection neutral

MH: morale hazard @ negative

Pft: Profitability

24



Predictions:
The Insurer of the Future Will...

Update systems to unleash full
power of data an analytics
Scale risk bearing capacity for
mega-cats

Be a 24/7 risk advisor

Profit from the trust vacuum
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